Isogeometric collocation for elastostatics and explicit dynamics
نویسندگان
چکیده
We extend the development of collocation methods within the framework of Isogeometric Analysis (IGA) to multi-patch NURBS configurations, various boundary and patch interface conditions, and explicit dynamic analysis. The methods developed are higher-order accurate, stable with no hourglass modes, and efficient in that they require a minimum number of quadrature evaluations. The combination of these attributes has not been obtained previously within standard finite element analysis.
منابع مشابه
Isogeometric collocation methods with generalized B-splines
We introduce isogeometric collocation methods based on generalized B-splines and we analyze their performance through numerical examples for univariate and multivariate scalarand vector-valued problems. In particular, advection–diffusion and linear elasticity model problems are addressed. The resultingmethod combines the favorable properties of isogeometric collocation and the geometrical and a...
متن کاملNitsche’s method for two and three dimensional NURBS patch coupling
We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. W...
متن کاملInnovative isogeometric formulations for shear deformable beams and plates
We present different innovative formulations for shear deformable beams and plates exploiting the high inter-element continuity provided by NURBS basis functions. We develop isogeometric collocation methods in standard and mixed formulations as well as Galerkin methods using an alternative set of discrete variables. All methods are free of shear locking, which is confirmed by numerical tests.
متن کاملStable Isogeometric Analysis of Trimmed Geometries
We explore extended B-splines as a stable basis for isogeometric analysis with trimmed parameter spaces. The stabilization is accomplished by an appropriate substitution of Bsplines that may lead to ill-conditioned system matrices. The construction for non-uniform knot vectors is presented. The properties of extended B-splines are examined in the context of interpolation, potential, and linear ...
متن کاملThe Isogeometric Nyström Method
In this paper the isogeometric Nyström method is presented. It’s outstanding features are: it allows the analysis of domains described by many different geometrical mapping methods in computer aided geometric design and it requires only pointwise function evaluations just like isogeometric collocation methods. The analysis of the computational domain is carried out by means of boundary integral...
متن کامل